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Novelty (Anomaly) : Data whose classes or attributes differs from training data
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Pretrained network

Input

Novelty

Trained with ‘No effect’

Input

Novelty

Class ‘5’ Rain

Goal: Detect novelties to ensure the robustness of machine learning algorithm
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Contributions
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1. We propose a framework to characterize novelty from the model 

perspective using gradients.

2. We validate the representation capability of gradients for novelty detection 

in comparison with activation through comprehensive baseline experiments.

3. We validate the generalizability of gradient features for different classes and 

input conditions.
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Reconstructed image manifold
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Model-Based Characterization
Statistical Analysis
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Model-Based Characterization
Statistical Analysis
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Model-Based Characterization
Statistical Analysis

Overlap=
Number of samples in the overlapped region

Total number of samples

à Gradient are the most discriminative features for 
novelty characterization
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Experimental Setup
Activation vs. Gradients
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Experimental Setup
Novel Class Detection
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Experimental Results
Novel Class Detection

AUROC Results
Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

1) The proposed gradient features consistently outperforms other classifiers for all the 

inlier classes in MNIST and Fashion MNIST
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Experimental Results
Novel Class Detection

AUROC Results
Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

1) The proposed gradient features consistently outperforms other classifiers for all the 

inlier classes in MNIST and Fashion MNIST

2) The gradient features achieve the highest average AUROC in CIFAR-10
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Experimental Results
Novel Class Detection

AUROC Results
Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

1) The proposed gradient features consistently outperforms other classifiers for all the 

inlier classes in MNIST and Fashion MNIST

2) The gradient features achieve the highest average AUROC in CIFAR-10

3) Comparison between reconstruction error and gradients highlights the significance of 

direction information from gradients
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Challenge-free

Challenging Unreal and Real Environments for Traffic Sign 

Recognition (CURE-TSR) (https://github.com/olivesgatech/CURE-TSR)

Experimental Setup
Novel Condition Detection

12 challenge types and 5 levels

Inliers

Outliers

Challenge-free

Lens blur Dirty lens Gaussian blur Rain Haze

https://github.com/olivesgatech/CURE-TSR
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Experimental Results
Novel Condition Detection

Lens blur Dirty lens Gaussian blur Rain Haze

1) The classifiers trained using the gradients outperform those trained on the reconstruction 

error and the latent loss for all challenge types and levels

2) The gradient features achieves the largest improvement in Rain followed by Lens blur 

and Gaussian blur



Conclusion
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• We proposed a framework to characterize novelty from the model perspective

using gradients.

• The statistical analysis demonstrates that the larger separation between inliers 

and outliers is achieved using the gradients compared to the activation.

• We shows that the classifiers trained using the gradients as features outperform 

those trained using common activation-based features in novel class and 

condition detection
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Thanks for your attention
CodePaperWebsite

[Website]: https://ghassanalregib.info/
[Paper]: https://arxiv.org/abs/2008.06094
[Code]: https://github.com/olivesgatech/gradcon-anomaly

[Extended version]: G. Kwon, M. Prabhushankar, D. Temel, and G. AIRegib, 
“Backpropagated Gradient Representations for Anomaly Detection,” In Proceedings of the 
European Conference on Computer Vision (ECCV), 2020. 

https://ghassanalregib.info/
https://arxiv.org/abs/2008.06094
https://github.com/olivesgatech/gradcon-anomaly

