Novelty Detection Through Model-Based Characterization of Neural Networks

Georgia Tech

CREATING THE NEXT

Gukyeong Kwon* (*: Speaker)

Mohit Prabhushankar

Dogancan Temel

Ghassan AlRegib

IEEE International Conference on Image Processing 25-28 October 2020, United Arab Emirates FULLY VIRTUAL

Georgia Institute of Technology

October 2020

Paper

Introduction Scene Understanding

Object detection

Semantic Segmentation

Instance Segmentation

Scene Understanding

Overview Novelty Detection

Novelty (Anomaly) : Data whose classes or attributes differs from training data

Goal: Detect novelties to ensure the robustness of machine learning algorithm

Overview Model-based Characterization

Existing approaches

How much of the input does not correspond to the learned information?

Proposed approach

Model-based Characterization (Backpropagate Gradient)

(Activation)

W' $\partial \mathcal{L}$ $\overline{\partial W}$

How much model update is required by the input?

Contributions

1. We propose a framework to characterize novelty from the model perspective using gradients.

2. We validate the representation capability of gradients for novelty detection in comparison with activation through comprehensive baseline experiments.

3. We validate the generalizability of gradient features for different classes and input conditions.

Related Works Usage of Gradients

Adversarial	attack	generation
		1999

Goodfellow	Kurakin	Madry
2014	2016	2017

Fast Gradient Sign Method

家称	CHE TANK		-52.5
		10 100	
	19919		
			201
	AT LESS		
	a stand of the		
	(20) C	記録	125

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

位

16 76

Jacobian Regularizer: Penalize the squared Frobenius norm of the Jacobian of the softmax output with respect to input.

 $L_{JacReg}(x, y, \Theta) = L(x, y, \Theta) + \lambda \|J_f\|_F^2$

Advantages of Gradient Features

Normal data distribution × $x \approx \hat{x}_{in}$ Reconstructed image manifold

Advantages of Gradient Features

Advantages of Gradient Features

Advantages of Gradient Features

 Provide directional information to characterize anomalies
Gradients from different layers capture novelty at different levels of data abstraction

Model-Based Characterization Statistical Analysis

1. Train a variational autoencoder with digit '5' images

15

Model-Based Characterization Statistical Analysis

2. Extract reconstruction error, latent loss, and gradient features

Model-Based Characterization

Statistical Analysis

17

Experimental Setup Novel Class Detection

1 class (inliers) / 9 classes (outliers)

Learned class

Novel classes

19 Georgia

Experimental Results Novel Class Detection

AUROC Results

Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

Detect	Dames	Classes										Avenage
Dataset	Repie.	0	1	2	3	4	5	6	7	8	9	Average
	Recon.	0.043	0.916	0.293	0.132	0.103	0.158	0.101	0.115	0.291	0.147	0.230
MNIST	Latent	0.956	0.510	0.687	0.740	0.852	0.526	0.675	0.942	0.348	0.948	0.718
	Gradient	0.985	0.994	0.941	0.928	0.953	0.926	0.980	0.960	0.894	0.968	0.953
	Recon.	0.778	0.952	0.831	0.799	0.801	0.787	0.748	0.939	0.610	0.932	0.818
fMNIST	Latent	0.733	0.642	0.525	0.877	0.715	0.831	0.585	0.961	0.702	0.835	0.741
	Gradient	0.913	0.958	0.883	0.922	0.907	0.924	0.798	0.974	0.925	0.975	0.918
	Recon.	0.600	0.485	0.539	0.496	0.532	0.444	0.601	0.545	0.634	0.541	0.542
CIFAR-10	Latent	0.683	0.382	0.560	0.458	0.649	0.486	0.724	0.465	0.662	0.550	0.562
	Gradient	0.658	0.543	0.632	0.461	0.725	0.493	0.699	0.490	0.641	0.477	0.582

1) The proposed gradient features consistently outperforms other classifiers for all the

20

inlier classes in MNIST and Fashion MNIST

Experimental Results Novel Class Detection

AUROC Results

Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

Deterat	Damra	Classes										Avorago
Dataset	Kepie.	0	1	2	3	4	5	6	7	8	9	Average
-	Recon.	0.043	0.916	0.293	0.132	0.103	0.158	0.101	0.115	0.291	0.147	0.230
MNIST	Latent	0.956	0.510	0.687	0.740	0.852	0.526	0.675	0.942	0.348	0.948	0.718
	Gradient	0.985	0.994	0.941	0.928	0.953	0.926	0.980	0.960	0.894	0.968	0.953
	Recon.	0.778	0.952	0.831	0.799	0.801	0.787	0.748	0.939	0.610	0.932	0.818
fMNIST	Latent	0.733	0.642	0.525	0.877	0.715	0.831	0.585	0.961	0.702	0.835	0.741
	Gradient	0.913	0.958	0.883	0.922	0.907	0.924	0.798	0.974	0.925	0.975	0.918
	Recon.	0.600	0.485	0.539	0.496	0.532	0.444	0.601	0.545	0.634	0.541	0.542
CIFAR-10	Latent	0.683	0.382	0.560	0.458	0.649	0.486	0.724	0.465	0.662	0.550	0.562
	Gradient	0.658	0.543	0.632	0.461	0.725	0.493	0.699	0.490	0.641	0.477	0.582

- 1) The proposed gradient features consistently outperforms other classifiers for all the inlier classes in MNIST and Fashion MNIST
- 2) The gradient features achieve the highest average AUROC in CIFAR-10

Experimental Results Novel Class Detection

AUROC Results

Recon: Reconstruction error features, Latent: Latent loss, Gradient: Gradient features

Dataset	Repre.	Classes										Avorago
		0	1	2	3	4	5	6	7	8	9	Average
-	Recon.	0.043	0.916	0.293	0.132	0.103	0.158	0.101	0.115	0.291	0.147	0.230
MNIST	Latent	0.956	0.510	0.687	0.740	0.852	0.526	0.675	0.942	0.348	0.948	0.718
	Gradient	0.985	0.994	0.941	0.928	0.953	0.926	0.980	0.960	0.894	0.968	0.953
	Recon.	0.778	0.952	0.831	0.799	0.801	0.787	0.748	0.939	0.610	0.932	0.818
fMNIST	Latent	0.733	0.642	0.525	0.877	0.715	0.831	0.585	0.961	0.702	0.835	0.741
	Gradient	0.913	0.958	0.883	0.922	0.907	0.924	0.798	0.974	0.925	0.975	0.918
CIFAR-10	Recon.	0.600	0.485	0.539	0.496	0.532	0.444	0.601	0.545	0.634	0.541	0.542
	Latent	0.683	0.382	0.560	0.458	0.649	0.486	0.724	0.465	0.662	0.550	0.562
	Gradient	0.658	0.543	0.632	0.461	0.725	0.493	0.699	0.490	0.641	0.477	0.582

- 1) The proposed gradient features consistently outperforms other classifiers for all the inlier classes in MNIST and Fashion MNIST
- 2) The gradient features achieve the highest average AUROC in CIFAR-10
- 3) Comparison between reconstruction error and gradients highlights the significance of direction information from gradients

Experimental Setup Novel Condition Detection

Challenging Unreal and Real Environments for Traffic Sign

Recognition (CURE-TSR) (https://github.com/olivesgatech/CURE-TSR)

Challenge-free

12 challenge types and 5 levels

23 Georgia Tech

Experimental Results Novel Condition Detection

- 1) The classifiers trained using the gradients outperform those trained on the reconstruction error and the latent loss for all challenge types and levels
- 2) The gradient features achieves the largest improvement in *Rain* followed by *Lens blur* and *Gaussian blur*

Conclusion

• We proposed a framework to characterize novelty from the model perspective using gradients.

 The statistical analysis demonstrates that the larger separation between inliers and outliers is achieved using the gradients compared to the activation.

 We shows that the classifiers trained using the gradients as features outperform those trained using common activation-based features in novel class and condition detection

Thanks for your attention

Website

Paper

Code

[Website]: https://ghassanalregib.info/

[Paper]: https://arxiv.org/abs/2008.06094

[Code]: <u>https://github.com/olivesgatech/gradcon-anomaly</u>

[Extended version]: G. Kwon, M. Prabhushankar, D. Temel, and G. AlRegib, "Backpropagated Gradient Representations for Anomaly Detection," In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2020. 26