Backpropagated Gradient Representations for Anomaly Detection

Georgia Tech

CREATING THE NEXT

Gukyeong Kwon* (*: Speaker)

Mohit Prabhushankar

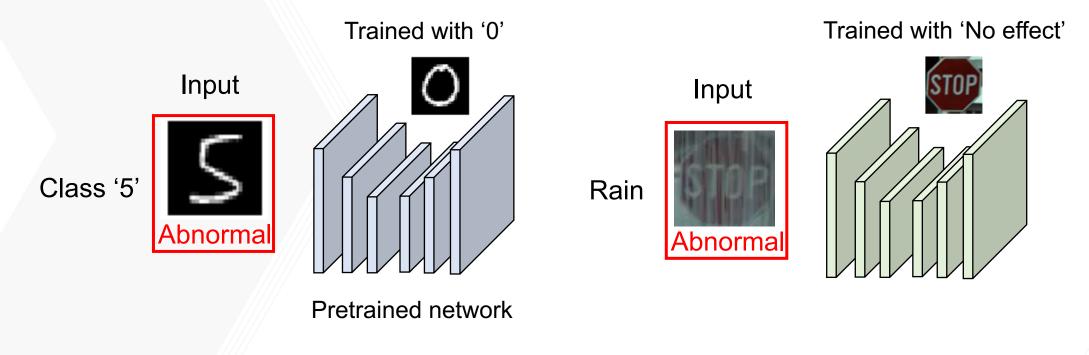
Dogancan Temel

Ghassan AlRegib

Georgia Institute of Technology August 2020

Paper & codes

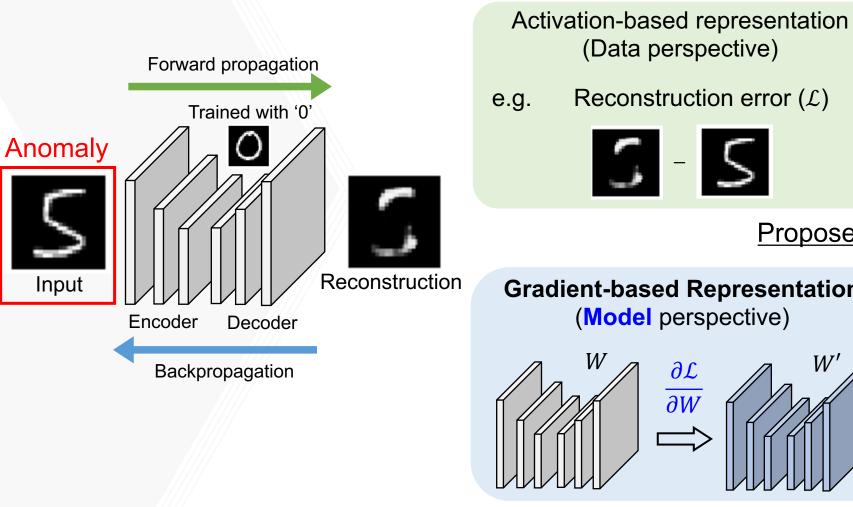
Anomaly: Data whose classes or attributes differs from training data



Goal: Detect anomalies to ensure the robustness of machine learning algorithm

Overview Gradient-based Representation

Existing approaches



How much of the input does not correspond to the learned information?

Proposed approach

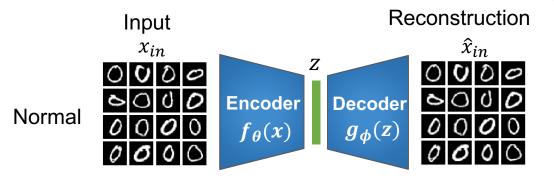
Gradient-based Representation (Model perspective)

> W' $\partial \mathcal{L}$ ∂W

How much model update is required by the input?

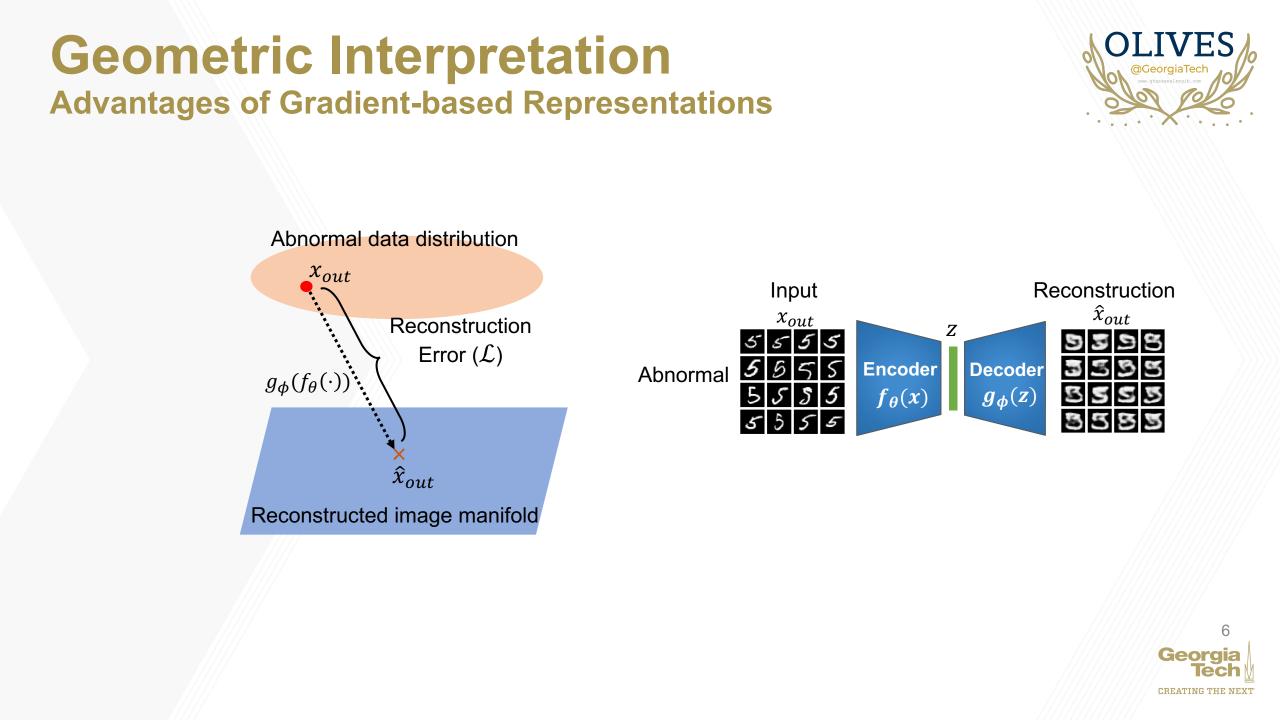
- 1. We propose utilizing backpropagated gradients as representations to characterize anomalies.
- 2. We validate the representation capability of gradients for anomaly detection in comparison with activation through comprehensive baseline experiments.
- 3. We propose an anomaly detection algorithm using gradient-based representations and show that it outperforms state-of-the-art algorithms using activation-based representations.

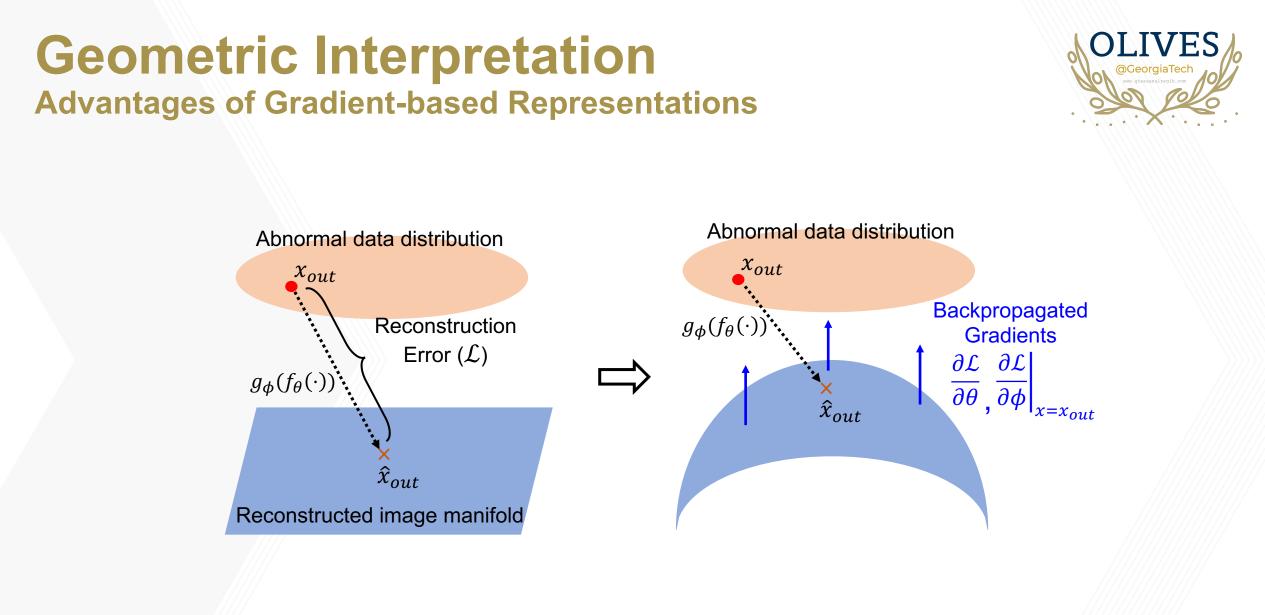
Geometric Interpretation Advantages of Gradient-based Representations

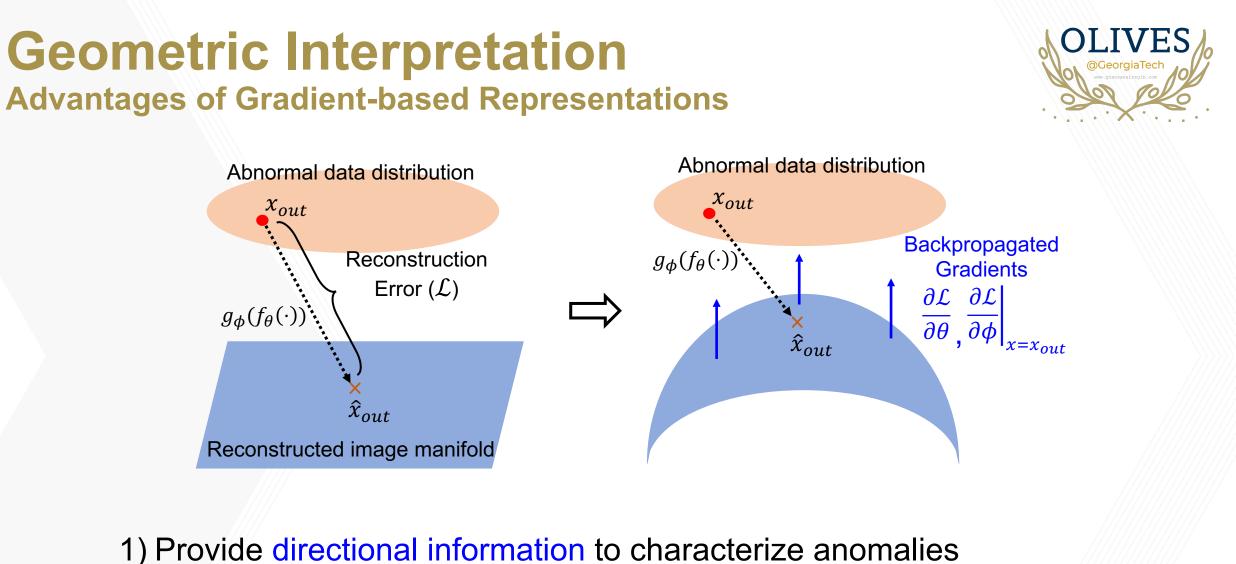


Normal data distribution × $x \approx \hat{x}_{in}$ Reconstructed image manifold

> 5 Georgia Tech







2) Gradients from different layers capture abnormality at different levels
of data abstraction

Theoretical Interpretation Fisher Kernel

Measure difference between two data points (X_i, X_i)

 $\nabla_{\phi_1} \log P(X | \phi, z)$

Fisher kernel $K_{FK}(X_i, X_j) = U_{\phi}^{X_i^T} F^{-1} U_{\phi}^{X_j}$

Fisher score

 $U_{\phi}^{X} = \nabla_{\phi} \log P(X|\phi, z)$

Fisher information matrix

$$F = \mathbf{E}_X[U_{\phi}^X U_{\phi}^{X^T}]$$

Georgia Tech

9

$$\phi$$
 : Decoder weight

 $\log P(X|\phi, z)$

 $\nabla_{\phi_2} \log P(X|\phi, z)$

z : Latent variable

Theoretical Interpretation Fisher Kernel

Distance between normal data

$$K_{FK}^{in}(X_{tr}, X_{te,in}) = U_{\phi}^{X_{tr}} F^{-1} U_{\phi}^{X_{te,in}}$$

 X_{tr} : Training data (normal) $X_{te,in}$: Test normal data

Distance between normal and abnormal data $K_{FK}^{out}(X_{tr}, X_{te,out}) = U_{\phi}^{X_{tr}} F^{-1} U_{\phi}^{X_{te,out}}$ X_{tr} : Training data (normal) $X_{te,in}$: Test abnormal data OLIVES @CeorgiaTech www.gbasasalengtb.com

For anomaly detection,

 $K_{FK}^{out}(X_{tr}, Y_{te,out}) \gg K_{FK}^{in}(X_{tr}, X_{te,in})$

When the autoencoder is trained to minimize negative loglikelihood loss,

$$\frac{\partial \mathcal{L}}{\partial \phi} \to \mathbf{U}_{\phi}^{X} = \nabla_{\phi} \log P(X|\phi, z)$$

→ Backpropagated gradients are descriptive representations for anomalies

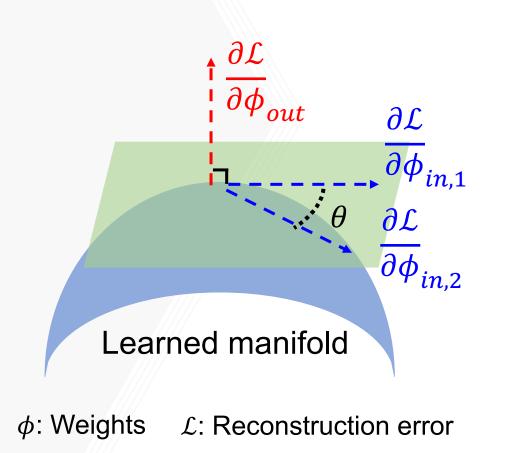
10

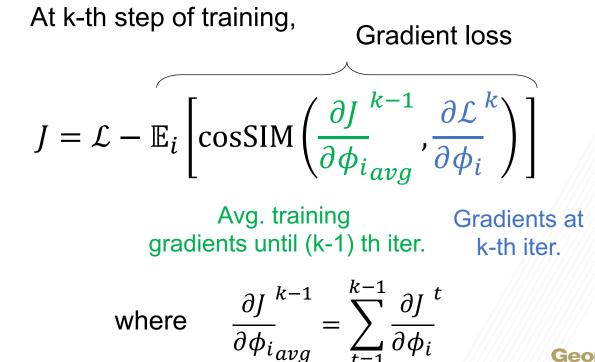
GradCon: Gradient Constraint

11

Constrain gradient-based representations during training to obtain clear

separation between normal data and abnormal data

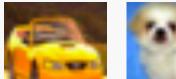




Baseline Experiment Activation vs. Gradients

AUROC Results

Abnormal "class" detection (CIFAR-10)



Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon	0.659	0.356	0.640	0.555	0.695	0.554	0.549	0.478	0.695	0.357	0.554
$+ \operatorname{Grad}$	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon Latent	0.553	0.608	0.437	0.546	0.393	0.531	0.489	0.515	0.552	0.631	0.526
VAL	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAE	Recon	0.556	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
+ Grad	Latent Grad	0.586	0.396	0.618	0.476	0.719	0.474	0.698	0.537	0.586	0.413	0.550
	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

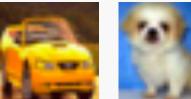
Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

1) (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

Baseline Experiment Activation vs. Gradients

AUROC Results

Abnormal "class"
detection (CIFAR-10)



Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon	0.659	0.356	0.640	0.555	0.695	0.554	0.549	0.478	0.695	0.357	0.554
+ Grad	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon	0.553	0.608	0.437	0.546	0.393	0.531	0.489	0.515	0.552	0.631	0.526
VAL	Latent	0.634			0.497							0.583
VAE	Recon	0.000	0.606	0.438	0.548	0.392	0.543	0.496	0.518	0.552	0.631	0.528
+ Grad	Latent Grad	0.586	0.396	0.618	0.476	0.719	0.474	0.698	0.537	0.586	0.413	0.550
T GIAU	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

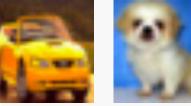
1) (CAE vs. CAE + Grad) Effectiveness of the gradient constraint

2) (CAE vs. VAE) Performance sacrifice from the latent constraint

Baseline Experiment Activation vs. Gradients

AUROC Results

Abnormal "class" detection (CIFAR-10)



Normal Abnormal

Model	Loss	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
CAE	Recon	0.682	0.353	0.638	0.587	0.669	0.613	0.495	0.498	0.711	0.390	0.564
CAE	Recon	0.659	0.356	0.640	0.555	0.695	0.554	0.549	0.478	0.695	0.357	0.554
+ Grad	Grad	0.752	0.619	0.622	0.580	0.705	0.591	0.683	0.576	0.774	0.709	0.661
VAE	Recon	0.553	0.608	0.437	0.546	0.393	0.531	0.489	0.515	0.552	0.631	0.526
VAL	Latent	0.634	0.442	0.640	0.497	0.743	0.515	0.745	0.527	0.674	0.416	0.583
VAF	Recon			0.438								0.528
VAE + Grad	Latent Grad	0.586	0.396	0.618	0.476	0.719	0.474	0.698	0.537	0.586	0.413	0.550
T Glau	Grad	0.736	0.625	0.591	0.596	0.707	0.570	0.740	0.543	0.738	0.629	0.647

Recon: Reconstruction error, Latent: Latent loss, Grad: Gradient loss

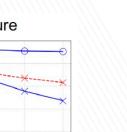
- 1) (CAE vs. CAE + Grad) Effectiveness of the gradient constraint
- 2) (CAE vs. VAE) Performance sacrifice from the latent constraint
- 3) (VAE vs. VAE + Grad) Complementary features from the gradient constraint

Baseline Experiment Abnormal Condition detection

Decolorization Lens Blur **Dirty Lens** Exposure 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.6 AUROC 0.6 ON 0.4 8 0.6 0.0 AUROC NOR 0.4 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 5 5 5 2 4 2 3 5 2 3 Levels Levels Levels Levels Gaussian Blur Rain Snow Haze 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.6 ON OC 0.6 AUROC 0.6 9.0 0.4 0.0 AUROC 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 2 3 4 2 3 5 3 5 4 3 Levels Levels Levels Levels ----- Grad (CAE+Grad) Recon (CAE) \rightarrow Recon (CAE+Grad)

AUROC Results

Recon: Reconstruction error, Grad: Gradient loss



Abnormal "condition" detection (CURE-TSR)

Abnormal

CIFAR-10, MNIST, Fashion MNIST

AUROC results in CIFAR-10

	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Average
OCSVM [34]	0.630	0.440	0.649	0.487	0.735	0.500	0.725	0.533	0.649	0.508	0.586
KDE [4]	0.658	0.520	0.657	0.497	0.727	0.496	0.758	0.564	0.680	0.540	0.610
DAE [9]	0.411	0.478	0.616	0.562	0.728	0.513	0.688	0.497	0.487	0.378	0.536
VAE [12]								0.527			0.583
PixelCNN [20]	0.788	0.428	0.617	0.574	0.511	0.571	0.422	0.454	0.715	0.426	0.551
LSA [1]	0.735	0.580	0.690	0.542	0.761	0.546	0.751	0.535	0.717	0.548	0.641
AnoGAN [33]								0.625			0.618
DSVDD [27]	0.617	0.659	0.508	0.591	0.609	0.657	0.677	0.673	0.759	0.731	0.648
OCGAN [22]	0.757	0.531	0.640	0.620	0.723	0.620	0.723	0.575	0.820	0.554	0.657
GradCon	0.760	0.598	0.648	0.586	0.733	0.603	0.684	0.567	0.784	0.678	0.664

AUROC results in MNIST

	0	1	2	3	4	5	6	7	8	9	Average
OCSVM [34]	0.988	0.999	0.902	0.950	0.955	0.968	0.978	0.965	0.853	0.955	0.951
KDE [4]	0.885	0.996	0.710	0.693	0.844	0.776	0.861	0.884	0.669	0.825	0.814
DAE [9]	0.894	0.999	0.792	0.851	0.888	0.819	0.944	0.922	0.740	0.917	0.877
VAE [12]	0.997	0.999	0.936	0.959	0.973	0.964	0.993	0.976	0.923	0.976	0.970
PixelCNN [20]	0.531	0.995	0.476	0.517	0.739	0.542	0.592	0.789	0.340	0.662	0.618
LSA [1]	0.993	0.999	0.959	0.966	0.956	0.964	0.994	0.980	0.953	0.981	0.975
AnoGAN [33]	0.966	0.992	0.850	0.887	0.894	0.883	0.947	0.935	0.849	0.924	0.913
DSVDD [27]	0.980	0.997	0.917	0.919	0.949	0.885	0.983	0.946	0.939	0.965	0.948
OCGAN [22]	0.998	0.999	0.942	0.963	0.975	0.980	0.991	0.981	0.939	0.981	0.975
GradCon	0.995	0.999	0.952	0.973	0.969	0.977	0.994	0.979	0.919	0.973	0.973

Fashion-MNIST

%	of outlier	10	20	30	40	50
	GPND	0.968	0.945	0.917	0.891	0.864
	Grad					
	GradCon	0.967	0.945	0.924	0.905	0.871
	GPND	0.928	0.932	0.933	0.933	0.933
	Grad					
	GradCon	0.938	0.933	0.935	0.936	0.934

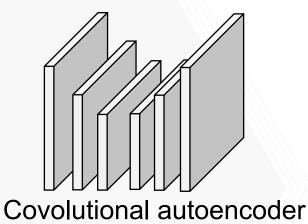
16

Geora

CREATING THE NEXT

Computational Efficiency Inference Time, Model Parameters

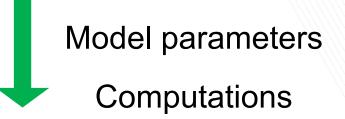
GradCon



[1] NeurIPS 2018

Does not require

X Autoregressive models



Average inference time per image for GradCon (3.08*ms*) is 1.9 times faster than GPND^[1] (5.72*ms*)

Method	# of parameters
AnoGAN	$6,\!338,\!176$
GPND	6,766,243
LSA	$13,\!690,\!160$
GradCon	230,721

 \rightarrow Model parameters are

at least 27 time less

17 Georgia Tech

Conclusion

 We propose using a gradient-based representation for anomaly detection by characterizing model behavior on anomalies

 The proposed anomaly detection algorithm, GradCon, achieves state-of-the-art performance with significantly less number of model parameters

 Using training strategies such as adversarial training or probabilistic modeling on gradient-based representations remains for future works

Thanks for your attention

Paper

Code

[Website]: <u>https://ghassanalregib.info/</u> [Paper]: <u>https://arxiv.org/abs/2007.09507</u> [Code]: <u>https://github.com/olivesgatech/gradcon-anomaly</u>

19 Georgia Tech